
Patterns of Optimism for Reducing the Effects
of Latency in Networked Multiplayer Games

Gabriel Shelley and Michael Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
gshelley@uwo.ca, katchab@csd.uwo.ca

Abstract

The video game industry has evolved in such a way that many users not only want, but also expect some
form of multiplayer experience in games. More so, users anticipate the same quality of service online as
they do offline, regardless of the limitations in the connection or infrastructure of the underlying network.
This expectation is especially problematic in highly time sensitive multi-player games such as first person
shooters and sports games. In many cases, the latency encountered forces gameplay to be very frustrating
and breaks immersion for the player. While there have been solutions proposed to help mitigate this
problem, they tend to focus on some particular game genre or gameplay element.

To address this issue, this paper presents a new approach to reducing the effects of latency in networked
multiplayer games that relies upon techniques in optimistic programming. In particular, this paper
introduces software design patterns for building optimistic constructs into networked games, and reports
on experiences in using these patterns in the development of a simple football game to validate their use
in networked games.

Keywords
Latency reduction, optimistic execution, software design patterns for games.

1. Introduction

With online games continuing to be the fastest growing market segment in the video game industry [16],
providing players a satisfactory gameplay experience will increasingly depend on the underlying network
and its overall performance. To cope with this situation, game developers require comprehensive and
effective methods to reduce the impact of adverse network conditions on their games that can occur far
too often [8].

Latency (also commonly referred to as lag or end-to-end delay) is an especially challenging problem [7],
leading to anything from minor annoyance to a totally unplayable experience. Latency has also been
experimentally shown to impair player experiences and affect the outcomes in multiplayer games [3]. In
some respects, unfortunately, there is little that can be done, particularly for games played over wide area
networks such as the Internet. Ultimately, the speed of light is not amenable to change.

There have been several proposed solutions introduced to address this problem. Unfortunately, most of
these solutions tend to be very narrow and very ad hoc, applying only to one aspect of a single genre of
games. Furthermore, some of these approaches tend to either induce confusing gameplay or introduce
potential inconsistencies that can break immersion in the game quite easily [7]. With more varied

gameplay from a wider variety of genres moving online, a more general, flexible, and robust solution is
necessary.

To fill this need, our earlier work introduced New HOPE [12], a framework for optimistic execution
specifically targeted at networked multiplayer games. The basic premise behind optimistic execution in
this case is to allow certain game activities to occur without checking with other parts of the game first,
provided that the outcomes of the activities are predictable and recoverable, in case predictions turn out to
be incorrect once synchronization occurs. Optimistic execution of such activities occurs in parallel with
confirmation of their outcomes, allowing the latency of synchronization to be effectively hidden from the
player.

Our current work builds upon the principles of New HOPE introduced in [12], providing software design
patterns for optimism in networked multiplayer games. By developing design patterns, we can identify
the structural elements required for optimism independent of genre and gameplay, and provide practical
implementation guidelines for the construction of networked games that use optimistic execution to
reduce the effects of latency. Based on these patterns of optimism, we have developed a simple football
game, Football Invaders, as a proof of concept to demonstrate the effectiveness and usefulness of our
work.

The remainder of this paper is structured as follows. Section 2 discusses related work in this area,
providing a brief overview and analysis of each approach and technique. Section 3 introduces and
describes the patterns of optimism developed in this work and provides guidelines for their use in
developing networked multiplayer games. Section 4 presents our proof of concept football game, and
discusses our experiences in using our newly developed design patterns in its construction. Finally,
Section 5 concludes this paper with a summary and a discussion of directions for future work.

2. Related Work

New HOPE is an evolution of the first HOPE (Hopefully Optimistic Programming Environment) project
[9], originally designed for non real-time applications. HOPE made exclusive use of rollback to recover
from situations in which incorrect optimistic predictions were made. While this was well suited for its
target applications, primarily banking systems and other transaction-oriented systems, it also made HOPE
not suitable for networked multiplayer games. A total rollback of activity would be tantamount to
undoing player actions and reactions, effectively moving the game backwards in time, which is highly
undesirable in general. Game progression, simply put, must always go forward in time.

Dead reckoning, discussed in [4], is a method that can be used for predicting and extrapolating the
behaviour of entities in a game world based on algorithms and models of movement and physics in the
game. The work in [5] discusses similar prediction techniques, specifically applied to the game Half-Life.
When predictions work well, such methods can be quite effective. When predictions are found to deviate
from reality, corrections are made that may cause a snap in player position, as the old, incorrect position
is updated with the newly corrected position. This can cause serious problems, particularly in action-
oriented games [14]. Smoothing algorithms can be used to minimize this snapping effect, at the cost of
delayed synchronization of game states.

There have been many extensions to dead reckoning and client-side prediction techniques. The work in
[1] and [15] is aimed at improving accuracy in predictions, but does so at the cost of requiring global
synchronization or increased message traffic and complexity. Context based reckoning, introduced in
[17], is a method in which natural language is used to convey game activity instead of numeric and

geometric data traditionally used. This requires special techniques to both identify and encode game
events, and other techniques to decode them for use. Context based reckoning shows promise, but is
complex and potentially unreliable, particularly if errors occur in the encoding or decoding phases.

Presentation delay [13] is a technique in which processing and presentation of game events in local and
remote entities are synchronized. This requires that local events are delayed. While this can remove
inconsistency problems, a serious issue introduced by latency in games, this comes at the cost of
additional delays; experimental results presented in [13] and further examined in [14] indicate that this
approach can produce unacceptable results in time sensitive action-oriented games.

Local perception filters were used in [19] as a technique for implementing “bullet time” in multiplayer
games. These filters can also be used in a game for masking latency by allowing temporal distortions in
the rendered view of the game. In essence, different parts of the game world are allowed to be rendered at
different times, depending on the proximity and possibility of interaction between the various entities in
the world. While showing improvements in certain gameplay scenarios, local perception filters require
that exact communication delays are known, and exhibit disruptions in the game when sudden changes to
the game world occur (such as when one player in a multiplayer game exits the world).

Server-side techniques for masking latency can be found in [10] and [5] for Unreal Tournament and Half-
Life respectively. This approach to latency compensation can be thought of as a step back in time.
Suppose a player invokes some action and this event is forwarded to a game server for processing. The
server computes latency, and deduces the time at which this action was invoked. The server then moves
the state of the game world back to this time to determine the effects of the action, applies the action, and
moves the state back to its current condition. While this technique can be effective, it does introduce
other paradoxes into the game world that can be difficult to handle and produce their own problems, as
discussed in [10] in detail.

While several potential solutions to the problem of latency in networked multiplayer games have been
proposed, each has its own drawbacks and limitations. In particular, these approaches tend to focus on
movement and shooting aspects of first person shooters, and other similar games. New HOPE differs in
that it is a more general and flexible solution, capable of supporting more varied gameplay. This is
discussed further in the next section.

3. Patterns in Optimism for Latency Reduction

In this section, we introduce software design patterns for optimism to reduce the effects of latency in
networked multiplayer games. Before doing so, we first describe software design patterns in general and
motivate their use in game development.

3.1. Software Design Patterns

The concept of design patterns was originally introduced in [2], and defined as follows: “Each pattern
describes a problem which occurs over and over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this solution a million times over, without
ever doing it the same way twice.” While these patterns were architectural patterns in buildings and
towns, many in software design have applied this same concept in formulating software design patterns.
As discussed in [11], software design patterns provide the structure for a design solution, including the
elements that make up the design and their relationships, responsibilities, and collaborations. Concrete

design details or implementation specifics are not provided, as a pattern is intended to act as a blueprint or
template that can be used in a variety of situations.

The use of patterns in game development is not new. For example, [6] provides a collection of over two
hundred game design patterns for various aspects of games and gameplay. Game design patterns can
provide game developers with templated solutions to a variety of problems, independent of genre, rules,
objectives, story, characters, platform, and so on. Consequently, if used properly, they can serve a very
useful purpose in the development of a game.

3.2. Software Design Patterns for Optimism

In [12], we introduced New HOPE as a framework for optimism to reduce the effects of latency in
networked games. To facilitate the development of optimistic games, we have developed several
software design patterns based on elements of this framework. The patterns themselves are too lengthy
and detailed for full inclusion here. In this paper, we present an overall pattern for optimism and discuss
this pattern and its sub-patterns at length, as the overall pattern provides sufficient information for most
purposes. For complete details on all of the sub-patterns, in a standard pattern form, the reader is urged to
consult [18].

The overall pattern for optimism in networked games is given in Figure 1. Instead of a standard object
diagram in OMT or UML, we instead provide more of a flow diagram to illustrate the important elements
of the patterns, their relationships, and the flow of control required to produce optimistic behaviour. The
various sub-patterns and elements of this pattern are discussed in further detail in the remainder of this
section. A concrete example of many of these concepts is provided in Section 4 in the discussion of the
proof of concept football game, Football Invaders.

3.2.1. The Optimism Decision Sub-Pattern

The optimism decision sub-pattern is used to make a choice as to whether proceed with execution in the
more traditional pessimistic fashion, or in an optimistic fashion. If pessimistic execution is selected,
execution will have to block to wait for the results of the action executed to be computed before
proceeding. If optimistic execution is selected instead, an assumption will be made about the outcome of
the action, and execution will proceed based on this assumption. At the same time, verification of the
assumption will be executed in parallel. If the assumption was correct, the latency in verifying the
outcome of the action is effectively hidden; if incorrect, a recovery method will need to be executed.

In essence, this decision amounts to determining if the action to be invoked is sufficiently recoverable and
predictable to permit optimistic execution. If the action is not easily recoverable, the consequences could
be disastrous if the assumption made was incorrect. If the outcome of the action is not very predictable,
then a recovery is more likely to be necessary. Since recoveries can be more costly and more jarring than
pessimistic execution would have been, this situation should be avoided when possible.

This decision making process will weigh several game and action specific factors against one another and
derive measures of recoverability and predictability; these measures are then compared against thresholds
to determine how execution should proceed. Players should be given input over the setting of these
thresholds to tune gameplay to their own preferences and tolerances, although the game should have some
input as well, according to observed latency in the network. By allowing a choice between pessimistic and
optimistic execution at run-time, finer control over optimism can be achieved, and a better play
experience can be provided to the player. (As warranted, static decisions can be embedded for
performance reasons, to avoid overhead in the decision processes when optimism clearly should or should
not be used.)

Figure 1. Overall Pattern for Optimism in Networked Multiplayer Games

3.2.2. The Caution Sub-Pattern

The caution sub-pattern involves the pessimistic execution of an action within a game to ensure that the
outcome of the action must be known before proceeding. Since we are focusing on networked games,
this will require communication between a local entity (typically a client) and a remote entity (typically
a server) to determine the outcome of the action executed. While waiting for the remote computation to
complete and return its result, local execution must block and wait. This can result in a noticeable break in
gameplay and produce an unsatisfactory experience for the player, particularly if the latency of
communication is very large.

While this method of execution can produce unsatisfactory experiences, the use of the caution sub-pattern
is at times necessary and unavoidable, particularly for actions that cannot be recovered, or when their
outcomes cannot be easily predicted, as discussed above.

3.2.3. The Guess Sub-Pattern

The guess sub-pattern is used to begin the optimistic execution process by making an assumption on the
expected outcomes of the execution of a particular action. Once again, in a networked game, this will
typically require collaboration between a local entity and a remote entity in a similar fashion as in the
caution sub-pattern above. The difference is that in this case, local execution may proceed, thereby
masking the latency of remote result computation and communication.

In using this sub-pattern, the guess process must be provided both with the expected results of the action
being executed, to be used in later verification, along with a set of recoveries that can be used in case the
actual computed results do not match the expected results.

3.2.4. The Padding Sub-Pattern

The padding sub-pattern is used to add some form of distraction element to the game to reduce the
amount of optimistic execution that is allowed to occur. This can be used in a wide variety of situations,
but is particularly useful when the recoverability or predictability of an action meets the threshold to
proceed optimistically (in the optimism decision sub-pattern in Section 3.2.1), but is below a second
threshold of comfort and still somewhat questionable as a result.

By employing this sub-pattern, the amount of recovery required is lessened if the original assumption was
incorrect, because the amount of optimistic execution was lessened. At the same time, the distraction
element in the padding still effectively masks the latency of result computation and communication that is
occurring in parallel.

To carry out the padding sub-pattern, a decision is first made as to whether padding is necessary or not.
This could involve a similar decision process as that used in optimism decision sub-pattern applied to
different thresholds, or an entirely different decision process. This decision process must also determine
which methods of padding are appropriate in the current situation and select one accordingly. (Multiple
methods of padding should be provided to handle different situations, and to allow for variety in the
handling of the same situation multiple times.) The padding is then executed, and optimistic execution
continues upon the completion of the padding. It is important to note that padding may consume either a
part or all of the time that would have been spent executing optimistically, depending on the situation and
the padding involved. (It is not a good idea for padding to take longer than this, however, as this could
slow the pace of the game unnecessarily, be disruptive, and lead to player frustration.)

3.2.5. The Synchronization Sub-Pattern

The synchronization sub-pattern is used to provide synchronization primitives for optimism.
Synchronization can be added to either check on the status of a remote computation (non-blocking mode)
or to force a wait for the remote computation to complete (blocking mode). This can be used to prevent
further optimistic execution from proceeding if that execution would be difficult to recover from. It is
important to note that recovery would still be necessary upon denial for any optimistic execution up until
this point, however.

To carry out the synchronization sub-pattern, a decision is first made as to whether synchronization is
necessary or not. This decision process is, once again, game and action specific. If a decision is made
that synchronization is necessary, a synchronization point is used to cause execution to block and wait
until the computation of results for the synchronized action is complete. If synchronization is not deemed
to be necessary, optimistic execution is allowed to proceed.

3.2.6. The Result Check Sub-Pattern

The result check sub-pattern is used at the end of pessimistic or optimistic execution to collect results
from the action initially carried out, and to allow the game to resume normal execution and control flow.
How this is done depends on whether pessimistic or optimistic execution was in use.

If execution was pessimistic, the game would currently be blocked waiting for the results of the action
invoked to be computed. With the results of the action now in hand, execution can simply continue at this
point, keeping the results in mind. While time was lost in the process, nothing special needs to be done to
proceed.

If execution was optimistic, there are two possibilities. If the assumption made when using the guess sub-
pattern was correct, the assumption is said to be affirmed, and execution can continue at this point with
the latency of the underlying computation and communication effectively hidden. If the assumption made
was incorrect, however, it is said to be denied. In this case, recovery is needed to cope with the incorrect
optimistic execution completed in the mean time, to bring the game back into an acceptable state.

3.2.7. The Recovery Sub-Pattern

The recovery sub-pattern is used to bring a game back into an acceptable state following the denial of an
optimistic assumption. Since multiple recoveries may be possible, a recovery selection procedure must
be followed to determine the best recovery the handle the current situation. After the execution of this
recovery, the game is allowed to proceed from this corrected state.

The selection of recovery method can depend upon many factors. These include the original action
executed, the optimistic execution that was carried out afterwards, as well as a variety of game and action
specific factors.

3.2.8. Additional Elements

In addition to the above core elements to the overall optimism pattern, there are several other elements
that can be applied. Two of these are discussed below; for further details, the reader is again urged to
consult [18].

One additional element is the pattern of nested optimism. The overall pattern of optimism presented in
Figure 1 depicts the flow of control for a single optimistic assumption. The situation quickly grows more

complex when additional optimistic assumptions are made as part of the optimistic execution of the
original assumption. This results in a nested optimism, in which the denial of one assumption can lead to
a cascading denial of all optimistic assumptions and require a complex recovery procedure. Because of
the complexity involved with nested optimism, its support is not required, but can be quite useful in some
gameplay situations.

Another element is an optimism feedback pattern. In this case, feedback from result checks is applied to
earlier decision processes to provide positive or negative reinforcement of decisions depending on the
affirmations and denials of optimistic assumptions. In this way, the optimistic execution process can be
tuned and adapted automatically during a game’s execution. Again, since this can be complex to support,
it is not a required feature.

4. Case Study in Using Patterns of Optimism

As proof of concept, the Football Invaders football game was developed using the optimism patterns
described in Section 3. The design of this game was based on a modification of a single-player version of
Space Invaders. All of the graphics were acquired from Cinemaware’s TV SPORTS: Football. The game
itself was written in Java. A screenshot of this game is shown in Figure 2.

Figure 2. Screenshot of Football Invaders.

Within Football Invaders, the player-controlled receiver is the football player at the top of the window in
Figure 2. The receiver is allowed to move in all directions around the field but cannot come with 15 yards
of the quarterback. The computer-controlled quarterback throws a football across the field at regular
intervals in a random direction. A wind force is also applied to act upon the football in every direction

except the direction of the quarterback. The goal of the game is to catch the football in light of the
unpredictable wind (and quarterback).

Football Invaders uses a client-server architecture, with UDP for communication between the client and
the server. The server is responsible for maintaining the game’s state and updating it according to player
input data received from the client and the behaviour of other game entities. This includes calculating
new wind speeds and updating the football’s position accordingly. This updated game state is then sent
back to the client. At the client, updated game states related to the last player input are rendered to the
display as they are received.

After Football Invaders was developed, our patterns of optimism were used to create a new set of Java
classes for assumptions, recoveries, paddings, and so on, in addition to an optimism class to drive and
manage optimistic execution. While these classes were logically separate, they had to be aware of much
of the inner workings of Football Invaders in order to effectively manipulate its execution as necessary.
Consequently, the implementation of our patterns of optimism in this case was tied specifically to
Football Invaders, and was not portable. In the future, we plan to investigate ways of having more
general, flexible, and portable optimism code constructs that can be used without modifications in other
games. Our earlier work in [12], however, indicated that this will be a difficult task indeed.

Our optimism patterns were specifically used in Football Invaders to make optimistic assumptions about
the catching of footballs. If the client detected that the player-controlled receiver was within a certain
distance from the football with appropriate wind conditions, the client would optimistically assume that
the receiver caught the football while waiting for a confirmation update from the server. Optimistic
execution in the mean time would show the player catching the ball and continue moving. Upon
affirmation of the optimistic assumption, the game would simply proceed as normal. If the assumption
was denied, meaning that the player did not, in fact, properly catch the football, the player bobbles and
drops the ball instead, as shown in Figure 3.

Figure 3. Screenshot of Recovery in Football Invaders.

Padding was also added to Football Invaders. When the player-controlled receiver was in range to catch
the football and trigger optimistic execution, but at the outer edge of this range, padding would execute.
This padding would slow the game on the client and show a zoomed in view of the player, giving the
server sufficient time to produce and send an update to the client indicating whether the ball was actually
caught or not. This is shown in Figure 4. Synchronization was also used at the end of optimistic
execution to prevent scoreboard updates until after an affirmation update from the server.

Figure 4. Screenshot of Padding in Football Invaders

Experiences with using patterns of optimism in developing Football Invaders were quite positive. The
design patterns provided an excellent framework for building optimism into Football Invaders, greatly
facilitating and easing the development process. Once complete, the optimistic execution within Football
Invaders worked as expected, masking the latency of communication between the client and the server.
Initial experimentation has indicated that latencies up to 200ms can be hidden through the above use of
optimistic software patterns, with little or no perceptible impact on gameplay; more thorough and
rigorous experimentation with a broader player base is currently under way.

Based on these results, it is expected that other developers can use these patterns to add optimistic
execution to networked multiplayer games successfully. Consequently, these patterns of optimism could
prove quite useful to reducing the effects of latency in games.

5. Conclusions and Future Work

Latency remains a challenging problem to the development and success of networked multiplayer games.
New HOPE is aimed at reducing or eliminating the effects of latency to produce more enjoyable gaming
experiences for players. Through the patterns of optimism introduced in this work, an important and
powerful tool is given to game developers to integrate optimistic execution into their own games. Our
own experiences in using these design patterns in the development of a simple football game, Football
Invaders, has shown their usefulness, and demonstrates great promise for the future.

There are many possible directions for future work in this area. These include the following:

• Further experimentation with our patterns of optimism and Football Invaders is clearly necessary. We

need to fully investigate the latency reduction benefits of optimism in this game, and learn how to
further tune the factors influencing optimism decisions to improve performance. Initial tests have
found that simple adjustments can have pronounced effects on gameplay [18], and so further study is
warranted.

• We also plan to have these patterns of optimism used in the development of additional games,

constructed by other developers. This will validate their use and provide valuable feedback for their
refinement.

• Further study is also required into the use of both nested optimism and optimistic feedback. Neither of
these sub-patterns was used in the development of the initial prototype of Football Invaders, and so
implementation and experimentation efforts are currently under way.

• Many of approaches to latency compensation discussed in Section 2, including dead reckoning and so

on, have predictive elements that, in the end, make them quite similar to the constructs used in
optimistic execution. Consequently, in the future, we plan to use the patterns of optimism introduced
for New HOPE to re-implement these approaches within this framework. Not only will this provide
further validation of this work, but it will also demonstrate its power and flexibility.

• Based on our on-going experiences with optimistic execution and New HOPE, we plan to continue

investigating the feasibility of developing software APIs and libraries to support optimistic execution
within networked games. This is a particularly challenging prospect considering the diversity of
gameplay elements found in different games, but could produce large benefits at the same time.

References

1. S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Rangarajan. “Accuracy in Dead-

Reckoning Based Distributed Multi-Player Games”. Proceedings of ACM SIGCOMM 2004
Workshops on NetGames '04: Network and System Support for Games. Portland, Oregon, August
2004.

2. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A Pattern
Language. Oxford University Press, New York, 1977.

3. G. Armitage. “Sensitivity of Quake3 Players to Network Latency”. Presented at the SIGCOMM
Internet Measurement Workshop. San Francisco, California, November 2001.

4. J. Aronson. “Dead Reckoning: Latency Hiding for Networked Games.” Appeared in Gamasutra.
Available at http://www.gamasutra.com/features/19970919/aronson_01.htm. September 1997.

5. Y. Bernier. “Latency Compensating Methods in Client/Server In-game Protocol Design and
Optimization.” Presented at the 2001 Game Developers Conference. San Francisco, California.
March 2001.

6. S. Björk and J. Holopainen. Patterns in Game Design. Charles River Media. 2005.
7. J. Blow. “Miscellaneous Rants”. Appeared in Game Developer Magazine. May 2004.
8. R. Carlson, T. Dunigan, R. Hobby, H. Newman, J. Streck, and M. Vouk. “Strategies & Issues:

Measuring End-to-End Internet Performance”. Appeared in Network Magazine. April 2003.
9. C. Cowan. “A Programming Model for Optimism”. PhD Thesis. Department of Computer Science,

The University of Western Ontario. February 1995.
10. J. Fraser. “Zeroping Frequently Asked Questions”. Accessible online at:

http://zeroping.home.att.net. April 2000.
11. E. Gamma, R. Helm, R. Johnson, and J Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley. 1995.
12. R. Hanna and M. Katchabaw. “Bringing New HOPE to Networked Games: Using Optimistic

Execution to Improve Quality of Service”. In the Proceedings of the DiGRA 2005 Conference.
Vancouver, Canada, June 2005.

13. L. Pantel and L. Wolf. “On the Impact of Delay on Real-Time Multiplayer Games”. Proceedings of
the 12th International Workshop on Network and Operating Systems Support for Digital Audio and
Video. Miami, Florida, May 2002.

14. L. Pantel and L. Wolf. “On the Suitability of Dead Reckoning Schemes for Games”. Proceedings of
the First Workshop on Network and System Support for Games. Bruanschweig, Germany, April
2002.

15. M. Mauve. “How to Keep a Dead Man from Shooting”. Lecture Notes in Computer Science; Vol.
1905. Proceedings of the 7th International Workshop on Interactive Distributed Multimedia Systems
and Telecommunication Services. Enschede, Netherlands, October 2000.

16. PricewaterhouseCoopers LLP. Global Entertainment and Media Outlook: 2005-2009. PWC Report,
2005.

17. J. Schirra. “Content-Based Reckoning for Internet Games”. Proceedings of the Second International
Conference on Intelligent Games and Simulation (GAME-ON 2001). London, England, November
2001.

18. G. Shelley. “Design Patterns for Optimism in Networked Games”. Masters Directed Studies
Report. Department of Computer Science, The University of Western Ontario. In Progress.

19. J. Smed, H. Niinisalo, and H. Hakonen. “Realizing Bullet Time Effect in Multiplayer Games with
Local Perception Filters”. Proceedings of ACM SIGCOMM 2004 Workshops on NetGames '04:
Network and System Support for Games. Portland, Oregon, August 2004.

